تعدیل میزان پرولین برگ و ریشه گل محمدی در پاسخ به هورمون اسید سالسیلیک و اسید جاسمونیک تحت تنش خشکی

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانش‌آموخته کارشناسی‌ارشد گروه علوم باغبانی و فضای سبز، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

2 نویسنده مسئول، دانشیار گروه علوم باغبانی و فضای سبز، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران

3 استاد گروه علوم باغبانی و فضای سبز، دانشکده تولید گیاهی، دانشگاه علوم کشاورزی و منابع طبیعی گرگان، گرگان، ایران.

4 استاد مؤسسه مسائل اساسی بیولوژیک، راس، پوشچینو، روسیه

چکیده

سابقه وهدف: بهبود تحمل به شرایط نامساعد محیطی توسط تنظیم‌کننده‌های رشد گیاهی در گیاهان گوناگون به اثبات رسیده است. با این وجود اثرات متقابل میان هورمون‌های اسید‌ سالیسلیک و اسید جاسمونیک در شرایط تنش خشکی مورد بررسی قرار نگرفته است. بنابراین در این پژوهش تغییر میزان رشد اندام‌های هوایی و زیر‌زمینی، همچنین میزان پرولین اندام‌های هوایی و ریشه گیاهان دو ساله گل محمدی به اسید جاسمونیک و اسید سالسیلیک خارجی در شرایط متفاوت تنش خشکی در سه زمان متفاوت از شروع تنش مورد بررسی قرار گرفت.
مواد و روش‌ها: گیاهان همگروهی مستقر شده در گلدان های پلاستیکی به مدت 11 روز در شرایط ثابت رطویت 100%، 50% و 25% ±5 ظرفیت مزرعه قرار گرفتند. محلول‌پاشی برگی با تنظیم کننده رشد اسیدجاسمونیک (50 میکرومولار)‌ و ترکیب هورمون اسیدجاسمونیک (50 میکرومولار)‌ و اسیدسالیسیلیک (5/1 میلی‌مولار)‌ انجام شد. اولین محلول پاشی 5 روز پیش از اولین روز آزمایش و دو مرتبه پس از شروع آزمایش به فاصله هفت روز انجام شد. نمونه‌برداری در روز 1، 4 و 11 انجام و پاسخ‌های مورفوفیزیولوژیک (ارتفاع ساقه، وزن‌تر ریشه، وزن خشک ریشه، نشت یونی) و بیوشیمیایی(پرولین برگ و پرولین ریشه) اندازه گیری شد. آزمایش در قالب فاکتوریل و به صورت بلوک کاملا تصادفی انجام شد.
یافته‌ها: بدون توجه به تیمار هورمونی، صفات اندازه‌گیری شده مانند ارتفاع ساقه، وزن‌تر و خشک ریشه در مقایسه با شاهد کاهش یافت و صفات دیگر مانند پرولین برگ و ریشه، نشت یونی، نسبت به شاهد در شرایط تنش خشکی 50 و 25% ظرفیت مزرعه افزایش یافت. میزان افزایش به 4 برابر در گیاهان محلول پاشی شده با اسیدجاسمونیک در مقایسه با شاهدِ محلول پاشی شده با آب مقطر پس از 4 روز در تنش 25% رسیده است. این افزایش میزان پرولین در شاخساره و ریشه مشابه بوده است. به هر حال در گیاهانی که در شرایط رطوبت نرمال 100% ظرفیت مزرعه بودند در اثر محلول پاشی اسیدجاسمونیک این سطح از این تغییرات را نشان ندادند. نتایج بیانگر این است که ترکیب اسیدسالیسیلیک و اسیدجاسمونیک میزان نشت یونی برگ و میزان پرولین ریشه و شاخساره را به نصف میزان تولید شده در گیاهان محلول پاشی شده با آب مقطر در تنش 25% کاهش می‌دهد و این میزان پرولین بسیار نزدیک به میزانی است که در گیاهان قرار گرفته در رطوبت 100% قابل مشاهده است. نتایج نشان داد که کاهش وزن تر و خشک ریشه که در تنش 25% به صورت تنها یا به همراه تیمار اسید جاسمونیک مشهود بود به وسیله کاربرد اسید سالسیلیک قابل برگشت می‌باشد و این موضوع در بهبود ارتفاع ساقه گل محمدی نیز نمایان بود.
نتیجه‌گیری: اثر تعدیل‌کنندگی تنش خشکی به وسیله خنثی نمودن اثر اسید جاسمونیک توسط اسید سالیسیلیک در میزان نشت یونی سلول و افزایش وزن تر و خشک ریشه مشاهده شد. کاهش تولید پرولین برگ و ریشه همچنین تعدیل نشت یونی در برگ گل محمدی تحت تنش خشکی در گیاهان محلول پاشی شده با ترکیب اسیدجاسمونیک همراه اسیدسالیسیلیک در مقایسه با اسید جاسمونیک تنها، بیانگر اثر تنظیم‌کنندگی منفی اسید‌سالسیلیک بر روی اسید‌جاسمونیک در تعدیل میزان پرولین برگ و شاخساره به عنوان یک شاخص فیزیولوژیک تحمل به خشکی می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Mitigation of root and shoot proline content in response to jasmonic and salicylic acid in Rosa damacena subjected to short drought stress

نویسندگان [English]

  • Mina khorrami moghadam 1
  • Mostafa Khoshhal Sarmast 2
  • Azim Ghasemnajad 3
  • Tatyana Savchenko 4
1 M.Sc. Graduate, Dept. of Horticultural Sciences and Landscape, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
2 Corresponding Author, Associate Prof., Dept. of Horticultural Sciences and Landscape, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
3 Professor, Dept. of Horticultural Sciences and Landscape, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
4 Professor, Institute of Basic Biological Problems, RAS, Pushchino, Russia
چکیده [English]

Background and Purpose: Improvement of plant tolerance to adverse environmental conditions has been proven by phytohormones in various plants species. However, the crosstalks between salicylic acid and jasmonic acid hormones under drought stress conditions have not been studied. Therefore, in this study, changes in the growth rate of aerial and underground organs as well as the proline content of aerial parts and roots of R. damacena to jasmonic acid and salicylic acid during the cource of drought stress conditions at three different times point were investigated.
Materials and Methods: Clonally propagated plants sown into plastic pots were exposed to constant water shortage at 25, 50 and 100% of field capacity for 11 days. Plants under different drought stress treatment foliar spraied with jasmonic acid (50 μM) and a combination of jasmonic (50 μM) and salicylic acid (1.5 μM). The first foliar application was performed a few days before the first day of the experiment and twice after the start of the water stress at intervals of seven days. Sampling was performed on days 1, 4 and 11 and morphophysiological responses (stem height, root fresh weight, root dry weight, Ionic leakage) and biochemical (leaf proline and root proline) were measured. The experiment was performed in factorial format and in a completely randomized block.
Results: Regardless of hormonal treatment, the measured traits such as stem height, root fresh weight, root dry weight decreased compared to the control and other traits such as leaf and root proline, ion leakage increased compared to the control in drought stressed plants. Plants grown under 25% of FC showed a 4 fold increase in proline content when exposed to JA in contrast to that of control sprayed with distilled water after 4 days. This increase in proline content in shoots and roots was similar. However, non-drought stressed plants which were exposed to JA, did not show such changes. The results show that the combination of SA and JA reduces the amount of ion leakage of leaves and the proline content of roots and shoots by half to the amount produced in plants sprayed with distilled water at 25% of FC and this amount of proline is very close to non-drought stressed plants. The results showed that the loss of fresh and dry weight of roots, which was evident in JA–received plant under 25% of FC can potentially be reversed by combination of SA and JA. This was also truth for stem height.
Conclusion: The drought stress mitigation of SA by reversing JA effects manifested in mitigating cell ion leakage, and increase in root fresh and dry weight. Reducing the root and shoot proline content and leaf ion leakage in plant exposed to combination of JA and SA compared to JA alone indicated a negative regulatory effect of SA on JA on modulating leaf and shoot proline content as a physiological indicator of drought tolerance.

کلیدواژه‌ها [English]

  • Proline content
  • JA
  • SA
  • Water shortage
1.Gil, C. S., Lim, S. T., Lim, Y. J., Jung, K. H., Na, J. K. & Eom, S. H. (2020). Volatile content variation in the petals of cut roses during vase life. Scientia Horticulture, 261, 108960.‏
2.Kiani, A., Hellquist, E., Ahlqvist, K., Gedeborg, R. & Byberg, L. (2010). Prevention of soccer-related knee injuries in teenaged girls. Archives of internal medicine, 170 (1), 43-49.‏
3.Naquvi, K. J., Ansari, S. H., Ali, M. & Najmi, A. K. (2014). Volatile oil composition of Rosa damascena Mill. (Rosaceae). Journal of Pharmacognosy and Phytochem. 2 (5), 177-181.‏
4.Kafi, M. & Riazi, Y. (2002). Cultivation of Rosa damascena Mill. and rose water production. Ministry of Agricultural-Jihad pub, Tehran, Iran.‏
5.Pal, P. K. (2013). Evaluation, genetic diversity, recent development of distillation method, challenges and opportunities of Rosa damascena: A review. Journal of Essential Oil Bearing Plants, 16 (1), 1-10.‏
6.Yousefi, S., Mihalache, C., Kozlowski, E., Schmid, I. & Simon, H. U. (2009). Viable neutrophils release mitochondrial DNA to form neutrophil extracellular traps. Cell Death & Differen. 16(11), 1438-1444.‏
7.Nikbakht, A. & Kafi, M. (2004). A study on the relationships between Iranian people and Damask rose (Rosa damascena) and its therapeutic and healing properties. In VIII International People-Plant Symposium on Exploring Therapeutic Powers of Flowers, Greenery and Nature 790 (pp. 251-254).‏
8.Kerchev, P., van der Meer, T., Sujeeth, N., Verlee, A., Stevens, C. V., Van Breusegem, F. & Gechev, T. (2020). Molecular priming as an approach to induce tolerance against abiotic and oxidative stresses in crop plants. Biotechnology Advance, 40, 107503.‏
9.Khaleghi, A., Naderi, R., Brunetti, C., Maserti, B. E., Salami, S. A. & Babalar, M. (2019). Morphological, physiochemical and antioxidant responses of Maclura pomifera to drought stress. Scientific Reports, 9 (1), 19250.‏
10.Kaur, G. & Asthir, B. (2017). Molecular responses to drought stress in plants. Biologia Plantarum, 61, 201-209.‏
11.Hasan, M. M., Skalicky, M., Jahan, M. S., Hossain, M. N., Anwar, Z., Nie, Z. F. & Fang, X. W. (2021). Spermine: its emerging role in regulating drought stress responses in plants. Cells, 10 (2), 261.‏
12.El-Esawi, M. A. & Alayafi, A. A. (2019). Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes, 10 (2), 142.‏
13.Saffari, M., Oveisi, M. & Zarghami, R. (2015). Investigation of the effect of putrescia polyamine on some traits of Thymus vulgaris L. In conditions of water shortage. Agriculture Research, 12 (4), 279-289.‏
14.Zhang, C., Yang, H., Wu, W. & Li, W. (2017). Effect of drought stress on physiological changes and leaf surface morphology in the blackberry. Brazilian Journal of Botany, 40, 625-634.‏
15.Iqbal, N., Hussain, S., Raza, M. A., Yang, C. Q., Safdar, M. E., Brestic, M. & Liu, J. (2019). Drought tolerance of soybean (Glycine max L. Merr.) by improved photosynthetic characteristics and an efficient antioxidant enzyme activities under a split-root system. Frontier in Physiology, 10, 786.‏
16.Nxele, X., Klein, A. & Ndimba, B. K. (2017). Drought and salinity stress alters ROS accumulation, water retention, and osmolyte content in sorghum plants. South African Journal of Botany,108, 261-266.‏
17.Sohag, A. A. M., Tahjib-Ul-Arif, M., Brestic, M., Afrin, S., Sakil, M. A., Hossain, M. T. & Hossain, M. A. (2020). Exogenous salicylic acid and hydrogen peroxide attenuate drought stress in rice. Plant, Soil and Environ. 66 (1), 7-13.‏
18.Szabados, L. & Savouré, A. (2010). Proline: a multifunctional amino acid. Trends in plant Science, 15 (2), 89-97.‏
19.Trovato, M., Forlani, G., Signorelli, S. & Funck, D. (2019). Proline metabolism and its functions in development and stress tolerance. Osmoprotectant-mediated abiotic stress tolerance in plants. Recent Advances and Future Perspectives,
41-72.‏
20.Florian, R. T., Kraft, F., Leitão, E., Kaya, S., Klebe, S., Magnin, E. & Depienne, C. (2019). Unstable TTTTA/ TTTCA expansions in MARCH6 are associated with Familial Adult Myoclonic Epilepsy type Nature Commun. 10 (1), 4919.‏
21.Freitas, C. M. D., Barcellos, C., Asmus, C. I. R. F., Silva, M. A. D. & Xavier, D. R. (2019). Da Samarco em Mariana à Vale em Brumadinho: desastres em barragens de mineração e Saúde Coletiva. Cadernos de Saúde Pública, 35.‏
22.Aswani, V., Rajsheel, P., Bapatla, R. B., Sunil, B. & Raghavendra, A. S. (2019). Oxidative stress induced in chloroplasts or mitochondria promotes proline accumulation in leaves of pea (Pisum sativum): another example of chloroplast- mitochondria interactions. Protoplasma, 256, 449-457.‏
23.Furlan, A. L., Bianucci, E., Giordano, W., Castro, S. & Becker, D. F. (2020). Proline metabolic dynamics and implications in drought tolerance of peanut plants. Plant Physiol. Biochem. 151, 566-578.‏
24.Freitas, C. M. D., Barcellos, C., Asmus, C. I. R. F., Silva, M. A. D. & Xavier, D. R. (2019). Da Samarco em Mariana à Vale em Brumadinho: desastres em barragens de mineração e Saúde Coletiva. Cadernos de Saúde Pública, 35.‏
25.Freitas, C. M. D., Barcellos, C., Asmus, C. I. R. F., Silva, M. A. D. & Xavier, D. R. (2019). Da Samarco em Mariana à Vale em Brumadinho: desastres em barragens de mineração e Saúde Coletiva. Cadernos de Saúde Pública, 35.‏
26.Seneviratne, M., Rajakaruna, N., Rizwan, M., Madawala, H. M. S. P., Ok, Y. S. & Vithanage, M. (2019). Heavy metal-induced oxidative stress on seed germination and seedling development: a critical review. Environmental geochemistry and health, 41, 1813-1831.‏
27.Hu, Z., Deibert, B. J. & Li, J. (2014). Luminescent metal–organic frameworks for chemical sensing and explosive detection. Chemical Society Review. 43 (16), 5815-5840.‏
28.Verma, V., Ravindran, P. & Kumar, P. P. (2016). Plant hormone-mediated regulation of stress responses. BMC plant biology, 16, 1-10.‏
29.Hura, T., Dziurka, M., Hura, K., Ostrowska, A., Dziurka, K. & Gadzinowska, J. (2017). Wheat and rye genome confer specific phytohormone profile features and interplay under water stress in two phenotypes of triticale. Plant Physiology and Biochemistry, 118, 494-509.‏
30.Hura, T., Dziurka, M., Hura, K., Ostrowska, A., Dziurka, K. & Gadzinowska, J. (2017). Wheat and rye genome confer specific phytohormone profile features and interplay under water stress in two phenotypes of triticale. Plant Physiology Biochemistery, 118, 494-509.‏
31.Kohli, S. K., Handa, N., Sharma, A., Gautam, V., Arora, S., Bhardwaj, R. & Ahmad, P. 2018. Interaction of 24-epibrassinolide and salicylic acid regulates pigment contents, antioxidative defense responses, and gene expression in Brassica juncea L. seedlings under Pb stress. Environmental Science and Pollution Research, 25, 15159-15173.‏
32.Kang, S. M., Jung, H. Y., Kang, Y. M., Yun, D. J., Bahk, J. D., Yang, J. K. & Choi, M. S. (2004). Effects of methyl jasmonate and salicylic acid on the production of tropane alkaloids and the expression of PMT and H6H in adventitious root cultures of Scopolia parviflora. Plant Science, 166 (3), 745-751.‏
33.Liu, Y., Wang, L., Li, Y., Li, X. & Zhang, J. (2019). Proline metabolism-related gene expression in four potato genotypes in response to drought stress. Biology Plant, 63, 757-764.‏
34.Raskin, I. (1992). Role of salicylic acid in plants. Annual Review of Plant Boil. 43 (1), 439-463.‏
35.Khan, M. I. R., Fatma, M., Per, T. S., Anjum, N. A. & Khan, N. A. (2015). Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. Fron.in Plant Science, 6, 462.‏
36.Shi, Q. & Zhu, Z. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environ. Experimental Botany, 63 (1-3), 317-326.‏
37.Dat, J. F., Lopez-Delgado, H., Foyer, C. H. & Scott, I. M. (1998). Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiology, 116 (4), 1351-1357.‏
38.Naz, R. & Bano, A. (2013). Influence of exogenously applied salicylic acid and plant growth promoting rhizobacteria inoculation on the growth and physiology of sunflower (Helianthus annuus L.) under salt stress. Pakistan. Journal of Botany, 45(2), 367-373.‏
39.Lutts, S., Kinet, J. M. & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46 (12), 1843-1852.‏
40.Murata, T. & Tatsumi, Y. (1979). Ion leakage in chilled plant tissues. Low temperature stress in crop plants. The Role of the Membrane, 141151.‏
41.Bates, L. S., Waldren, R. A. & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207.‏
42.Haworth, M., Killi, D., Materassi, A., Raschi, A. & Centritto, M. (2016). Impaired stomatal control is associated with reduced photosynthetic physiology in crop species grown at elevated [CO2]. Fron. Plant Science, 7, 1568.‏
43.Lutts, S., Kinet, J. M. & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46 (12), 1843-1852.‏
44.Mohammadi, H., Hazrati, S. & Ghorbanpour, M. (2020). Tolerance mechanisms of medicinal plants to abiotic stresses. In Plant life under changing environment (pp. 663-679). Academic Press.‏
45.Liang, J. J., Qu, B. Y., Suganthan, P. N. & Hernández-Díaz, A. G. (2013). Problem definitions and evaluation criteria for the CEC special session on real-parameter optimization. Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou, China and Nanyang Technological University, Singapore, Technical Report, 201212 (34), 281-295.‏
46.Rizzi, Y. S., Monteoliva, M. I., Fabro, G., Grosso, C. L., Laróvere, L. E. & Alvarez, M. E. (2015). P5CDH affects the pathways contributing to Pro synthesis after ProDH activation by biotic and abiotic stress conditions. Fron. Plant Science, 6, 572.‏
47.Wang, K., Jin, P., Cao, S., Shang, H., Yang, Z. & Zheng, Y. (2009). Methyl jasmonate reduces decay and enhances antioxidant capacity in Chinese bayberries. Journal of Agriculture Food Chemistry, 57 (13), 5809-5815.‏
48.Rejeb, K. B., Abdelly, C. & Savouré, A. (2014). How reactive oxygen species and proline face stress together. Plant Physiol. Biochem. 80, 278-284.‏
49.Amin, M., Ahmad, R., Ali, A., Aslam, M. & Lee, D. J. (2016). Silicon fertilization improves the maize (Zea mays L.) performance under limited moisture supply. Cereal Research Communications, 44 (1), 172-185.‏
50.Ashraf, M., Akram, N. A., Arteca, R. N. & Foolad, M. R. (2010). The physiological, biochemical and molecular roles of brassinosteroids and salicylic acid in plant processes and salt tolerance. Critical Reviews in Plant Sciences, 29 (3), 162-190.‏
51.Farzaneh, M. & Tafazoli, A. S. (2014). Methyl jasmonic effect on carotenoid pigments and morphological characters of tomato under salt stress conditions. In The First National Conference on Medicinal Plants and Sustainable Agriculture (Vol. 10, pp. 125-135).‏
52.Eraslan, F., Inal, A., Gunes, A. & Alpaslan, M. (2007). Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hort. 113 (2), 120-128.‏
53.García, M. G., Busso, C. A., Polci, P., García Girou, N. L. & Echenique, V. (2002). Water relations and leaf growth rate of three Agropyron genotypes under water stress. Bio cell, 26 (3), 309-317.‏
54.Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant science, 164 (3), 317-322.‏
55.Kusaka, M., Lalusin, A. G. & Fujimura, T. (2005). The maintenance of growth and turgor in pearl millet (Pennisetum glaucum [L.] Leeke) cultivars with different root structures and osmo-regulation under drought stress. Plant Science, 168 (1), 1-14.‏
56.Lobet, G. & Draye, X. (2013). Novel scanning procedure enabling the vectorization of entire rhizotron-grown root systems. Plant Methods, 9 (1), 1-11.‏
57.Gowda, V. R., Henry, A., Yamauchi, A., Shashidhar, H. E. & Serraj, R. (2011). Root biology and genetic improvement for drought avoidance in rice. Field crops research, 122 (1), 1-13.‏
58.Cao, N., Wang, C., Li, M., Ren, K. & Lou, W. (2013). Privacy-preserving multi-keyword ranked search over encrypted cloud data. IEEE Transactions on parallel and distributed systems, 25(1), 222-233.‏
59.Xiao, S., Liu, L., Zhang, Y., Sun, H., Zhang, K., Bai, Z. & Li, C. (2020). Fine root and root hair morphology of cotton under drought stress revealed with RhizoPot. J. Agron. Crop Science, 206 (6), 679-693.‏
60.Yan, S. S., Qiu, Z. K., Yu, B. W., Ming, F. Y., Chen, C. M., Lei, J. J. & Cao, B. H. (2020). Advances in phytohormone auxin response to high temperature. Acta Hort. Sinica, 47 (11), 2238-2246.‏
61.Westfall, C. S., Muehler, A. M. & Jez, J. M. (2013). Enzyme action in the regulation of plant hormone responses. Journal of Biological Chemistry. 288 (27), 19304-19311.‏
62.Gharib, F. A. (2006). Effect of salicylic acid on the growth, metabolic activities and oil content of basil and marjoram. International Journal of Agriculture. Biology, 4, 485-492.‏
63.Abdollahi, A., Farsad-Akhtar, N., Mohajel Kazemi, E. & Kolahi, M. (2023). Investigation of the combined effects of cadmium chloride, silver nitrate, lead nitrate, methyl jasmonate, and salicylic acid on morphometric and biochemical characteristics of St. John’s wort. Physiology and Molecular Biology of Plants, 29 (2), 173-184.‏
64.Ataei, N., Moradi, H. & Akbarpour, V. (2013). Growth parameters and photosynthetic pigments of marigold under stress induced by jasmonic acid. Notulae Scientia Biolog. 5 (4), 513-517.‏
65.El-Esawi, M. A. and Alayafi, A. A. (2019). Overexpression of StDREB2 transcription factor enhances drought stress tolerance in cotton (Gossypium barbadense L.). Genes, 10 (2), 142.‏
66.Habba, E. E., Abdel Aziz, N. G., Sarhan, A. M. Z., Arafa, A. M. S. & Youssefi, N. M. (2016). Effect of putrescine and growing media on vegetative growth and chemical constituents of Populus euramericana plants. Journal of Innovations in Pharmaceutical and Biological Sciences, 3 (1), 61-73.‏
67.Jouyban, Z. (2012). The effects of salt stress on plant growth. Technical Journal of Engineering and Applied Sciences, 2 (1), 7-10.‏
68.Pirasteh-Anosheh, H., Emam, Y., Rousta, M. J. & Hashemi, S. E. (2016). Effect of salicylic acid on biochemical attributes and grain yield of barley (Horedum vulgare L. cv. Nosrat) under saline conditions. Iranian Crop Science, 18 (3),‏ 48-58.
69.Bandeoğlu, E., Eyidoğan, F., Yücel, M. & Avni Öktem, H. (2004). Antioxidant responses of shoots and roots of lentil
to NaCl-salinity stress. Plant Growth Regulation, 42, 69-77.‏
70.Beltrano, J. & Ronco, M. G. (2008). Improved tolerance of wheat plants (Triticum aestivum L.) to drought stress and rewatering by the arbuscular mycorrhizal fungus Glomus claroideum: Effect on growth and cell membrane stability. Brazilian Plant Physiology, 20, 29-37.‏
71.Rezaie Alulu, A., Kheiry, A., Sanikhani, M. & Arghavani, M. (2019). Effect of salicylic acid and glycine betaine foliar application on morpho-physiological characteristics of carla (Momordica charantia L.) under water deficit stress. Journal of Agricultural Science and Sustainable Production, 29 (1), 223-235.‏
72.Farzaneh, M. & Tafazoli, A. S. (2014). Methyl jasmonic effect on carotenoid pigments and morphological characters of tomato under salt stress conditions. In The First National Conference on Medicinal Plants and Sustainable Agriculture (Vol. 10, pp. 125-135).‏
73.Stevens, L. A., Coresh, J., Greene, T. & Levey, A. S. (2006). Assessing kidney function-measured and estimated glomerular filtration rate. New England Journal of Med. 354 (23), 2473-2483.‏
74.Ghoulam, C., Foursy, A. & Fares, K. (2002). Effects of salt stress on growth, inorganic ions and proline accumulation in relation to osmotic adjustment in five sugar beet cultivars. Environment Experimental Botany, 47 (1), 39-50.‏
75.Singh, B. & Usha, K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regulation, 39, 137-141.‏