ارزیابی صفات کمی و کیفی در برخی از ژنوتیپ های توت فرنگی با راهکار PLS-PM

نوع مقاله : مقاله کامل علمی پژوهشی

نویسندگان

1 دانشجوی دکتری گروه اصلاح نباتات و بیوتکنولوژی، دانشگاه شهرکرد، ایرانی

2 استادیار گروه زراعت و اصلاح نباتات، دانشگاه ایلام، ایران

3 دانشیار علوم باغبانی، گروه علوم باغبانی، دانشگاه شهرکرد، ایران

4 مربی مدیریت سازمان جهاد کشاورزی، دیوان‌دره، کردستان، ایران

چکیده

سابقه و هدف: تعیین ارتباط بین ویژگی های مورفولوژیکی، فیزیولوژیکی و بیوشیمیایی (کیفی)، جهت حصول افزایش تولید و کیفیت محصولات باغی از جمله توت فرنگی ضرورت دارد. با گذشت زمان، راهکارهای آماری متنوعی جهت درک روابط واقعی متغیرها ظهور پیدا کرده و راهکارهای آماری قدیمی تر، بتدریج جای خود را به انواع جدید، به دلیل برآورد و حصول علمی تر و مطمئن تر نتایج داده اند. در این بین، راهکار جدید PLS-PM بدلیل روش نوین و نتایج معتبر و جذاب تر، کاربرد زیادی نسبت به روش های آماری قدیمی دارد.
مواد و روش ها: صفات مورفولوژیکی: گل، میوه، کیفی (بیوشیمیایی) و عملکرد در 8 ژنوتیپ توت‌فرنگی طی 4 سال در قالب طرح بلوک‌های کامل تصادفی با سه تکرار مطالعه گردید. از راهکارهای مختلف آماری همانند برآورد ضرایب همبستگی، رگرسیون گام‌به‌گام، تجزیه مسیر ساده و جهت درک دقیقتر روابط، الگوریتم تحلیل داده ها با راهکار پیشرفته ی PLS-PM (شامل آلفای کرونباخ، ضرایب بار عاملی، معناداری ضرایب مسیر و ضریب تبیین، نیکویی برازش و بارهای عاملی متقاطع) استفاده گردید.
یافته ها: با وجود تنوع ژنتیکی بین ارقام، بین عملکرد میوه با ویژگی های میوه، تعداد برگ، ویژگی های گل آذین و تعداد طوقه در بوته و نیز بین اندازه میوه و میزان آنتوسیانین همبستگی بالا و مثبتی مشاهده شد. تعداد گل آذین، اندازه و حجم و تعداد میوه، تاریخ تشکیل ساقه‌رونده و طول دوره گلدهی 3/88 درصد از تغییرات عملکرد را تبیین و مهم ترین اجزاء آن شناخته شدند. تعداد وحجم میوه بیشترین اثر مستقیم را بر افزایش عملکرد میوه داشتند. گل دهی، بیشترین تأثیر را بر عملکرد میوه داشته و سپس صفات موروفولوژیکی بیشترین تأثیر را بر صفات بیوشیمیایی و گل‌آذین داشتند. اندازه و حجم میوه، بیش از بقیه، تحت تأثیر صفات مورفولوژیکی بود.
نتیجه گیری: در این تحقیق، از راهکارهای آماری مختلفی جهت درک ارتباطات صفات با ماهیت متفاوت توت فرنگی استفاده گردید، که هیچکدام به اندازه راهکار جدید ولی ناشناخته PLS-PM نشان دهنده ی تأثیر مهم صفات گل دهی در افزایش عملکرد میوه توت فرنگی نبود. با بکارگیری روش جدید PLS-PM در مقایسه با روش‌های قدیمی آماری، و با انجام دسته‌بندی صفات، با توجه به ماهیت متفاوت آنها، نتیجه گرفته شد که در بحث افزایش عملکرد میوه توت فرنگی، صفات گل دهی از بقیه صفات موردنظر، مؤثرتر بوده و صفات ریختی شامل: ارتفاع گل‌آذین، تعداد برگ، طول گوشوارک، تعداد طوقه، تاریخ شروع و تعداد ساقه‌رونده و سطح برگ نیز از جمله صفات تأثیرگذار بوده که بر اساس آنها می‌توان برنامه‌های اصلاحی و تولید اقتصادی‌ توت‌فرنگی را مدیریت نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluating the quantitative and qualitative characteristics of some strawberry genotypes using PLS-PM approach

نویسندگان [English]

  • Majid Shahmohammadi 1
  • Ali Arminian 2
  • Abdoalrahman MohammadKhani 3
  • Amir Azizian 4
1 Ph.D. Student, Dept. of Plant Breeding and Biotechnology, Shahrekod University, Iran
2 Assistant Prof., Dept. of Agronomy and Plant Breeding, Ilam University, Iran
3 Associate Prof., Dept. of Horticultural Sciences, Shahrekod University, Iran,
4 Expert, Agri-Jahad Organization Management, Divan Dareh, Kordestan, Iran
چکیده [English]

Background and objective: Determining the relationship between morphological, physiological and biochemical (qualitative) characteristics is necessary to increase the production and quality of horticultural products, such as strawberries. Over time, a variety of statistical approaches have been emerged in order to evaluate the relationships of variables, and old-fashioned statistical solutions have gradually replaced with new ones with more scientific and reliable results. Meanwhile, the new PLS-PM approach, due to its new methodology and more reliable and attractive results, has more applications than classical sttatistical methods.
Materials and methods: Some morphological traits, flower, fruit, qualitative (biochemical) and yield in eight genotypes of strawberry were studied in a randomized complete block design with three replications for four years. Different statistical methodologies were utilized i.e. estimating correlation coefficients, stepwise regression, simple path analysis, and to gain a more accurate relationships, data analysis algorithm performed with advanced PLS-PM approach (including Cronbach's alpha, factor load coefficients, path coefficients and coefficient of determination, the goodness of fit and cross-loadings).
Results: The results showed that despite genetic variation among cultivars, there was a significant correlation between fruit yield with fruit traits, number of leaves, flourescence characteristics and number of crowns per plant, and fruit size and anthocyanin level. The number of flourescence, size, volume and number of fruits, date of formation of runners and flowering period accounted for 88.3% of the variation of yield and its most important components. Number and size of fruit had the most direct effect on the increase of fruit yield. Flowering had the most effect on fruit yield and then morphological traits had the most effect on biochemical and inflorescence traits. The size and volume of fruit was affected by morphological traits more than others.
Conclusion: In this study, various statistical approaaches have been used for understanding the relationship between evaluated traitsin of strawberries, where none of them was as suitable as the recent but unfamiliar PLS-PM approach, indicating the important effect of flowering characteristics on increasing the fruit yield of strawbwrry. Applying the new PLS-PM method in comparison with the old statistical methods, and by categorizing the traits, it was concluded that due to their different nature, in relation to the increase in the yield of fruit yield, flowering traits were more effective compared to the other traits, and the morphological traits including: height of inflorescence, number of leaves, ear length, crown length, start date, number of runners and leaf area are also influential traits that can be used to manage strawberry breeding programs and economic production.

کلیدواژه‌ها [English]

  • Biochemicals
  • Morphological
  • Multivariate
  • Path analysis
  • PLS
1.Abasi-Esfanjani, H. 2018. Designing a commercialization research model for academic research using partial least squares structural equation modeling. Comm. Res. J. 82: 33-65. (In Persian)
2.Amani, G., Khezri-Azar, H. and Mahmoodi, H. 2013. Introducing structural equation modeling by least squares method and its application in behavioral researches. J. Psych-Barkhat. 1: 1. 41-55. (In Persian)
3.Anna, F.D., Caracciolo, G., Moncada, A. and Vetrano. F. 2011. Effect of cultivar and crown size on yield and quality of strawberry fresh bare root plants in Sicily. ISHS Acta Hort. 952: International Symposium on Advanced Technologies and Management Towards Sustainable Greenhouse Ecosystems: Greensys.
4.Ara, T., Haydar, A., Mahmud, H.K., Halequzzaman, K.M. and Hossain, M. 2009. Analysis of the different parameters for fruit yield and yield contributing characters in strawberry. Int. J. Sust. Crop Prod. 4: 5. 15-18.
5.Arab-Tazhan-Dareh, A., Ismaili, A., Rezaei-Nezhad, A., Karami, F. and Gharghani, A. 2016a. Investigation of correlation and causality relationships of physiological and phenological characteristics and grouping of strawberry (Fragaria × ananassa Duch) genotypes. Plant J. Phys. Biol. 1: 1. 39-50. (In Persian)
6.Arab-Tazhan-Dareh, A., Ismaili, A., Rezaei-Nezhad, A., Karami, F. and Gharghani, A. 2016b. Genetic diversity and factor analysis for performance and some morphological characteristics in tobacco cultivars. Crop Garden Breed. J. 3: 1. 13-26. (In Persian)
7.Arminian, A., Houshmand, S. and Shiran, B. 2010. Evaluation the relationships between grain yield and some of its related traits in a doubled-haploid bread wheat population. Elec. J. Crop Prod.3: 1. 21-38. (In Persian)
8.Bagheri, H., Kashani-Nezhad, M., Aalami, M. and Ziaei Far, A.M. 2018. Evaluation of sensory and tissue properties of peanut butter brain by partial least squares regression method. Iran. J. Food Sci. Tech. 13: 4. 540-552. (In Persian)
9.Baumann, T.E., Eaton, G.W. and Spaner, D. 1993. Yield components of day-neutral and short-day strawberry varieties on raised beds in British Columbia. Hort. Sci. 28: 9. 891-894.
10.Bedard, P.R., Hsu, C.S., Spangelo, L.P.S., Fejer, S.O. and Rouselle,G.L. 1971. Genetic, phenotypic and environmental correlations among fruit and plant characters in the 28 cultivated strawberry. Genet. Cytol. 13: 3. 470-479.
11.Bhatt, G.M. 1973. Significance ofpath coefficient analysis determiningthe nature of character association. Euphytica. 22: 338-343.
12.Biswas, M.K., Islam, R. and Hossain, M. 2008. Micro propagation and field evaluation of strawberry in Bangladesh. J. Agric. Tech. 4: 1. 167-182.

13.Cocco, C., Andriolo, J.L., Erpen, L., Cardoso, F.L. and Casagrande, G.S. 2010. Development and fruit yield of strawberry plants as affected by crown diameter and plantlet growing period. Pes. Agro. Brasileira. 45: 7. 730-736.

14.Cocco, C., Andriolo, J.L., Cardoso,F.L., Erpen, L. and Schmitt, O.J.2011. Crown size and transplant typeon the strawberry yield. Sci. Agric.68: 4. 489-493.
15.Das, A.K., Singh, B. and Sahoo, R.K. 2006. Correlation and path analysis in strawberry (Fragaria ananassa Duch). Indian J. Hort. 63: 1. 83-85.
16.Doffing, S.M. and Knight C.W. 1992. Alternative model for path analysis of small-grain yield. Crop Sci. 32: 487-489.
17.Farahani, A. and Arzani, A. 2006. Investigating genetic variation of cultivars and F1 hybrids of durum wheat using agronomic and morphologic characters. Agric. Nat. Res. Tech. Sci. J. 38: 341-356. (In Persian)
18.Fuleki, T. and Francis F.J. 1968. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J. Food. Sci. 33: 72-78.
19.Gravois, K.A. 1998. Optimizing selection for rough rice yield, Headrice and total milled rice. Euphytica. 101: 151-156.
20.Hendry, G.A.F. and Price, A.H. 1993. Stress indicators: chlorophylls and carotenoids. In: Hendry, G.A.F. and J.P. Grime. (Eds.), Methods in Comparative Plant Ecology, Chapman and Hall, London.
21.Iqbal, S., Mahmood, T., Tahira, M., Ali, M. and Anwar, M. 2003. Path coefficient analysis in different genotypes of soybean (Glycine max (L.) Merril). Pakistan J. Biol. Sci. 6: 1085-1087.
22.Kramer, S. and Schultze, W. 1985. The effects of the quality of young plants on strawberry yield. Gartenbau. 32: 115-117.
23.Machikowa, T. and Laosuwan, P. 2011. Path coefficient analysis for yield of early maturing soybean. Songklanakarin J. Sci. Technol. 33: 4. 365-368.
24.Moyer, R.A., Hummer, K.E., Finn,C.E., Frei, B. and Wrolstad, R.E.2002. Anthocyanins, phenolics and antioxidant capacity in diverse small fruits: Vaccinium, Rubus and Ribes. J. Agr. Food. Chem. 50: 519-525.
25.Nicoll, M.F. and Galletta, G.J. 1987. Variation in growth and flowering habits’ of Junebearing and Everbearing strawberries. American Sco. Hort. Sci. 112: 872-880.
26.Perez De Camacaro, M.E., Camacaro, G.J., Hadley, P., Dennett, M.D., Battey, N.H. and Carew, J.G. 2004. Effect of plant density and initial crown size on growth, development and yield in strawberry cultivars Elsanta and Bolero. J. Hort. Sci. Biol. 79: 5. 739-746.
27.Poormombini, S., Mortazavi, S.M.H., Moalemi, N., Mozafari, E.A. and Moezi, A.A. 2017. Effect of planting date and concentration of nutrient solution on yield components and some qualitative characteristics of strawberry fruit, Camarza cultivar in Ahwaz weather conditions. Agric. Sci. J. 38: 4. 13-24.(In Persian)
28.Rafiei, F. and Saeidi, Gh.A. 2005. Phenotypic and genotypic relationships between agronomic traits and yield components of safflower. J. Sci. Agri. 28: 137-147.
29.Rao, V.K., Bharat, L., Yadav, V.K.and Sharma, S.K. 2010. Correlationand path analysis in strawberry (Fragaria ananassa Duch.). J. Hill Agric. 2: 1. 179-182. 
30.Rashnoonezhad, F., Moalemi, N. and Mortazavi, S.M.H. 2017. Effect of harvest time and fruit size on the physical and biochemical properties of pomegranate fruit of Rabab Niriz cultivar in Qalat-e-Talgar-olmk. Plant Prod. Agric. Plant Breed. Hort. 39: 3. 27-38. (In Persian)
31.Rezaei, A.M. and Soltani, A. 1998. Introduction to Applied Regression Analysis. Isfahan University of Technology Press, 294p.
32.Rieger, M. 2005. In: Rieger, M. (eds). Strawberry. Introduction to Fruit Crops. New York: Haworth Food & Agricultural Products Press, Pp: 383-392.
33.Sanchez, G. 2013. PLS pathmodeling with R. Trowchez Editions. Berkeley, 2013. Available on: http://www.gastonsanchez.com/ PLS Path Modeling with R.pdf.
34.Shokaeva, D.B. 2008. Relationships between yield components in first cropping year and average yield of short-day strawberries over two main seasons. Sci. Hort. 118: 14-19.
35.Shokaeva, D.B. 2005. The influence of plant development peculiarities and environmental conditions on fruiting and yield height of differing short-day strawberry genotypes. Environmentally friendly fruit growing proceedings of the international scientific conference. Tartu. Fruit Sci. 222: 117-123.
36.Shokaeva, D.B. 2006. Principles of fruiting of short-day strawberries. Cartouche. Orel. 134p.
37.Singh, S.R., Lal, S., Ahmed, N., Srivastava, K.K., Kumar, D., Jan, N., Amin, A. and Malik, A.R. 2013. Determination of genetic diversity in strawberry (Fragaria × ananassa) using principal component analysis (PCA) and single linkage cluster analysis (SLCA). Afr. J. Biot. 12: 24. 3774-3782.
38.Soltani-Kazemi, M., Abdanan-Mahdizadeh, S., Heidari, M. and Faregh, S.M. 2018. Extraction of the most effective spectrum of blackberry (Morus alba Varnigra L.) juice using different partial least squares regression models (PLS). Sci. Food Ind. 96: 41. 229-241. (In Persian)
39.Streiner, D.L. 2006. Building a better model: An introduction to structural equation modeling. Can J. Psych.
51: 317-324.
40.Strik, B.C. and Proctor, J.T.A. 1988. Yield component analysis of strawberry genotypes differing in productivity. Amer. Sco. Hort. Sci. 113: 1. 124-129.
41.Tavoosi, M. and Shahin-Rokhsar, P. 2011. Effect of four types of adjuvant on yield and some strawberry growth parameters in soil-free culture. J. Agric. Sci. 4: 13. 83-95. (In Persian)
42.Torres-Quezada, E.A., Zotarelli, L., Whitaker, V.M., Santos, B.M. and Hernandez-Ochoa, I. 2015. Initial crown diameter of strawberry bare-root transplants affects early and total fruit yield. Hort. Tech. 25: 2. 203-208.
43.Webb, R.A., Judith, V., Purves, B.A., White, R. and Ellis, A. 1974. Critical path analysis of fruit production in strawberry. Sci. Hort. 2: 175-184.
44.Wright, S. 1921. Correlation and causation. J. Agric. Res. 20: 557-585.
45.Wu, Z., Liu, Q., Li, Z., Sun, J., Guo, Z., Li, Y., Zhou, J., Meng, D., Li, H. and Yin, H. 2018. Environmental factors shaping the diversity of bacterial communities that promote rice production. BMC Microl. 18: 51-60.
46.Zahedi, S.M., Nazemi, Z. and Hooshmand Panah, Z. 2016. Effect of planting date and planting on yield and yield components of strawberry in organic production (In Hashtgerd  region). Sci. J. Plant Eophys. 7: 22. 279-292. (In Persian)
47.Zolleh, H.H., Bahrami Nejhad, S., Maleki, G. and Papzan, A.H. 2009. Response of cumin (Cuminum cyminum L.) to sowing date and plant density. Res. J. Agric. Biol. Sci. 5: 4. 597-602.